DRUGS AFFECTING BLOOD

Małgorzata Berezińska
Department of Pharmacology
Medical University of Lodz

Hemostasis

The process of stopping bleeding in damaged or ruptured blood vessel

- To prevent blood loss
- To stop bleeding
- To maintain blood in a fluid state (prevents thrombosis)

Vascular constriction

- Pain
- Moderate to severe reduction in blood flow
- Independent of blood coagulation
- Short period (5 – 20 min)

Platelet adhesion

- Inhibitors of platelets adhesion in intact vessels:
 - Prostacyclin
 - Nitric oxide
- Injury to the intima
- Exposure to subendothelial extracellular matrix proteins (collagen, fibronectin, von Willebrand Factor)
 - Rapid localisation of platelets to the site of injury
 - Formation of a platelet plug

Platelets activation

- Agonists – vWF, thrombin, ADP, thromboxane A₂ (TXA₂), serotonin, epinephrine, vasopressin, fibrinogen, immune complexes, plasmin, PAF
- Changes in the platelet shape
- Degranulation of cytoplasmic vesicles
<table>
<thead>
<tr>
<th>Platelets aggregation</th>
<th>Thrombin functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in GP IIb/IIIa conformation</td>
<td>Fibrinogen conversion</td>
</tr>
<tr>
<td>Binding ligand proteins to GP IIb/IIIa and forming</td>
<td>Activation of coagulation factor XIII</td>
</tr>
<tr>
<td>bridges</td>
<td>Activation of other coagulation factors and</td>
</tr>
<tr>
<td></td>
<td>cofactors to amplify thrombin generation</td>
</tr>
<tr>
<td></td>
<td>Migration of white cells</td>
</tr>
<tr>
<td></td>
<td>Activator of vascular smooth muscle cells migration and</td>
</tr>
<tr>
<td></td>
<td>proliferation</td>
</tr>
<tr>
<td>Generation of TXA₂ and thrombin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clotting inhibition system</th>
<th>Fibrinolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostacyclin</td>
<td>Plasmin</td>
</tr>
<tr>
<td>Protein C / protein S system</td>
<td>Tissue plasminogen activator</td>
</tr>
<tr>
<td>Antithrombin III (AT III)</td>
<td>Plasminogen activator inhibitors</td>
</tr>
<tr>
<td>Tissue Factor Pathway Inhibitor (TFPI)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coagulation in vitro</th>
<th>Thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood in a glass tube clots in 4 to 8 minutes</td>
<td>Sites of endothelial damage</td>
</tr>
<tr>
<td>Binding of Ca++ (EDTA, citrate)</td>
<td>Sites of endothelial damage</td>
</tr>
<tr>
<td>Recalcification of plasma – clots in 2 to 4 minutes</td>
<td>Sites of endothelial damage</td>
</tr>
<tr>
<td>aPTT (activated partial thromboplastin time) – negatively</td>
<td>Sites of endothelial damage</td>
</tr>
<tr>
<td>charged phospholipides, kaolin – 26 to 33 seconds</td>
<td>Sites of endothelial damage</td>
</tr>
<tr>
<td>PT (prothrombin time) – thromboplastin – 12 to 14</td>
<td>Sites of endothelial damage</td>
</tr>
<tr>
<td>seconds</td>
<td>Sites of endothelial damage</td>
</tr>
</tbody>
</table>

Thrombosis – pathological process in which a platelet	Arterial occlusion
aggregate and/or a fibrin clot occludes the blood vessel.	Myocardial infarction
	Stroke
	Peripheral ischemia
	Venous occlusion
	Deep venous thrombosis
	Pulmonary embolism
	Sites of endothelial damage
	Stasis
	Increased systemic coagulability
	Damaged heart valves
	DIC
Drug affecting blood

- Platelet inhibitors
- Anticoagulants
- Thrombolytic agents

Platelet inhibitors

- Aspirin
- Clopidogrel
- Ticlopidin
- Glycoprotein IIb/IIIa receptor antagonists

Aspirin

- Acetic acid ester of salicylic acid; acetylsalicylic acid
- Antiplatelet agent
- Prevention and treatment of arterial thrombotic disorders
 - Angina pectoris
 - Myocardial infarction
 - Ischemic stroke

Aspirin - pharmacokinetics

- Rapidly absorbed from GI tract
- Partially hydrolyzed to salicylate on first pass through the liver
- Widely distributed into body tissues

Aspirin - unwanted effects

- Gastrointestinal irritation
- Bleeding time is prolonged
- Increased incidence of hemorrhagic stroke
- Increased incidence of gastrointestinal bleeding (ulcer)
- „Aspirin asthma“

Ticlopidine

- Inhibits ADP-dependent aggregation of the platelet
- Decreases the incidence of thrombotic stroke
 - **Clinical uses:**
 - For patients who cannot tolerate Aspirin
 - **Unwanted effects:**
 - Nausea, vomiting and diarrhea
 - Prolonged bleedings
 - Neutropenia, agranulocytosis
Clopidogrel
- Analog of ticlopidine
- Inhibits ADP-induced aggregation
- More effective than Aspirin
- Recommended for patients before PTCA
- The main unwanted effect is bleeding
- It can inhibit cytochrome P-450 so it may interfere with metabolism of other drugs

Antagonists of GP IIb/IIIa receptors
- ABCIKSIMAB – monoclonal antibody
- TIROFIBAN – oligopeptid
- By binding to GP IIb/IIIa receptor they block the binding of fibrinogen and other factor and aggregation does not occur – they inhibit all pathways of platelet activation

Antagonists of GP IIb/IIIa receptors
- **Clinical uses:**
 - in high-risk patients undergoing coronary angioplasty to reduce the risk of restenosis
- **Unwanted effects:**
 - potential of bleeding
 - Immunogenicity
 - They are used intravenously for single administration
 - May be used in combination with heparin or aspirin

Anticoagulants
- Heparin
- Enoxaparin
- Vitamin K antagonists
 - Warfarin
 - Acenocoumarol

Anticoagulants – clinical use
- Prevention of:
 - Deep vein thrombosis
 - Extension of established deep vein thrombosis or recurrence of pulmonary embolus
 - Thrombosis and embolisation in patients with atrial fibrillation
 - Thrombosis on prosthetic heart valves
 - Cardiac events in patients with unstable coronary syndromes
 - Clotting in extracorporeal circulations (haemodialysis or bypass surgery)

Heparin
- Family of mucopolisacharides
- Together with histamine present in the granules of mast cells
- Inhibits coagulation by activating antithrombin III, which inhibits thrombin (IIa), factor Xa and other serine proteases by binding to the active site
- Is given intravenously or subcutaneously
- The activated partial thromboplastin time (APTT) must be measured (targeted range 1.5-2.5 times control)
Heparin – clinical use

- Preventing venous thrombosis
- Treating deep venous thromboembolism and pulmonary embolism
- The early treatment of patients with unstable angina and acute myocardial infarction
- Preventing clotting in catheters used to cannulate blood vessels

Heparin – adverse effects

- Hemorrhage
- Hypersensitivity reactions: chills, fever, urticaria and even anaphylactic shock
- Thrombocytopenia (after 8-10 days of treatment) with or without thrombosis
- Bone loss
- Heparin-induced bleeding \(\Leftrightarrow \) protamine sulfate
 100 units heparin / 1 mg protamine sulfate

Enoxaparin

- One of low-molecular-weight heparins (LMWHs); fractionated heparin
- Increases the action of antithrombin III on factor Xa
- Does not act on thrombin
- Has a longer elimination half-time than heparin
- Does not prolong the APTT

Low-molecular-weight heparins

- Ardeparin
- Dalteparin
- Nadroparin
- Parnaparin
- Certoparin
- Tinzaparin
- Reviparin

Lepirudin (hirudin)

- Recombinant protein, derived from yeast cells
- Potent direct inhibitor of thrombin
- Clinical use – thrombosis complications related to heparin-induced thrombocytopenia
- Adverse effects – bleeding, abnormal liver function, allergic skin reactions

Prothrombin complex

- II (prothrombin)
- VII
- IX
- X
Warfarin

- Warfarin has structural similarity to vitamin K
- Inhibits activation of factors II, VII, IX, X, which are depend on present of vitamin K
- Pharmacological effect is delayed, it can occur about 48 hours after first administration
- The effect must be monitored by measuring INR (target range 2-3)
- Dose are given individualised according to INR.

Warfarin – clinical use

- Prevention and treatment of venous thromboembolism and pulmonary embolism
- Prevention of thrombotic and embolic strokes
- Prevention of recurrence of infarction
- Patients with mechanical prosthetic valves
- Atrial fibrillation

Warfarin – adverse effects

- Hemorrhage and bleeding
- Skin necrosis
- Cause abortion
- It is teratogenic agent

Thrombolytic agents

- Streptokinase
- Alteplase
- Urokinase

TA – clinical use

- Acute myocardial infarction within 12 hours of onset
 THE EARLIER THE BETTER!
- Acute thrombotic stroke within 3 hours of onset (in selected patients)
- Acute arterial thromboembolism
- Clearing arterial shunts and cannulae

Streptokinase

- Protein extracted from culture of streptococci
- Activates free plasminogen to convert to plasmin, which in turn cleaves fibrin, thus lysing thrombi
- **Adverse effects:**
 - Bleeding disorders
 - Hypersensitivity – rashes, fever, anaphylactic shock
 - Drug does not act in patients who have circulating antibodies against streptokinase (in case streptococcal infection) – they may neutralize its fibrinolytic effect
Alteplase

- Known as tissue-type plasminogen activator (tPA)
- Is a serine protease from cultured human melanoma cells
- Activates only plasminogen bound to fibrin in a thrombus or a hemostatic plug ("fibrin selective")
- Adverse effects – BLEEDING complication (gastrointestinal and cerebral hemorrhages)

Urokinase

- Produced in kidney
- Directly converts plasminogen to plasmin by cleaving the arginine-valine bond in plasminogen
- Directly degrades fibrin and fibrinogen

TA – contraindications

- Acute pericarditis
- Active internal bleeding
- Recent cerebrovascular accident
- Metastatic cancer

Bleeding disorders

- Vascular defects include acquired or hereditary structural abnormalities of blood vessel wall
- Platelet defects include acquired or hereditary abnormalities in platelet quantity (thrombocytopenia) or platelet quality (thrombocytopathy)
- Defects of coagulant factors (hemophilia, von Willebrand disease)

Methods of controlling bleeding

<table>
<thead>
<tr>
<th>Desired result</th>
<th>Physiologic methods</th>
<th>Physical methods</th>
<th>Chemical agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemostasis</td>
<td>Vasoconstriction, platelet plug, clot retraction</td>
<td>Pressure, electrocautery, cooling, sutures</td>
<td>Epinephrine, astringents, styptics</td>
</tr>
<tr>
<td>Clotting</td>
<td>Procoagulants, thrombin, platelets, other clotting factors</td>
<td>Physical maliness, gelatin, cellulose, collagen</td>
<td>Topical thrombin, fibrin sealant, antifibrinolytics</td>
</tr>
</tbody>
</table>

Genetically based disorders of coagulation

- Hemophilia A – factor VIII
- Hemophilia B – factor XI
- Von Willebrand’s disease
Coagulation factors concentrates
- Factor VIII concentrates – hemophilia A
- Factor IX concentrates – hemophilia B

Desmopressin
- Synthetic analog of vasopressin
- Causes the release of von Willebrand factor and factor VIII from body storage sites
- Patients with mild factor VIII deficiency and von Willebrand disease
- Intranasal spray, intravenous or subcutaneous injection

Vitamin K
- Essential factor for the liver synthesis of prothrombin, factors VII, IX, X, protein C and protein S
- **Clinical uses:**
 - Reversing bleeding caused by vitamin K antagonists
 - Patients with vitamin K deficiency
 - Preventing hypoprothrombinemia in the newborn

ε-aminocaproic acid (EACA)
- Inhibits the fibrinolytic system
- Oral and parenteral formulations
- **Clinical use** – treatment of many bleeding conditions (urinary tract)
- **Adverse effects** – intravascular thrombosis, hypotension, myopathy, diarrhea, nasal stuffiness

Aprotinin
- Protein purified from bovine lung
- Inhibitor of several serine proteases including tissue and plasma kallikrein – decrease in the formation of activated coagulation factor XII
- **Clinical use** – reduction of blood loss during cardiac surgery
- **Adverse effect** – hypersensitivity reactions

Topical absorbable hemostatics
- Thrombin
- Micronized collagen
- Absorbable gelatin
- Oxidized cellulose
Soft tissue bleeding
- Pressure with sterile cotton gauze
- Hemostats
- Ligation
- Electrocautery
- Microfibrillar collagen or collagen sheets

Bleeding from bony structures
- Pressure with sterile cotton gauze
- Collagen plug or gelatin sponge

Astringents and Styptics
- Hemostasis while retracting gingival tissue
- Salts of zinc, silver, iron and aluminium
- Tannic acid
 - Denaturation of tissue and blood protein
 - Agglutination
 - Plug

Vasoconstrictors
- Epinephrine
 - Solutions
 - Dry cotton pellets impregnated with epinephrine
- Tetrahydrozoline
- Oxymetazoline

Patients receiving anticoagulants
- Bleeding after surgery
- Thromboembolic events
- Drug interactions

Any intended oral surgical therapy in anticoagulated patients required preliminary planning and consultation with the patients’ physician

INR

<table>
<thead>
<tr>
<th>INR</th>
<th>Extent of surgery?</th>
<th>No surgical treatment until INR is reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td><4</td>
<td>Minimal bleeding expected</td>
<td>Consider reducing INR; use local measures</td>
</tr>
<tr>
<td>>4</td>
<td>Moderate bleeding expected</td>
<td>Modify anticoagulation to achieve an INR < 3; use local measures</td>
</tr>
</tbody>
</table>
Anemia

- Reduction in the red blood cell mass
- Hematocrit value less than
 - 37% - women
 - 40% - men
- Symptoms – pale skin, fatigue, shortness of breath, cold extremities, lightheadedness, headaches, weakness, inflammation of the tongue, soreness of the tongue, brittle nails, cravings for non-nutritional substances such as ice, dirt, or pure starches, poor appetite especially in children or babies

Consequences of chronic anemia

- Reduced function and quality of life
- Decreased survival (<65 years)
- Increased risk of heart failure
- Increased risk of coronary death
- Changes in neurological function

Causes of anemia

- **Hypoproliferative**
 - Microcytic
 - Iron deficiency
 - Chronic disease
 - Sideroblastic anemia
 - Normocytic
 - Chronic disease
 - Endocrine anemia
 - Bone marrow failure
 - Macrocytic
 - Vitamin B12 deficiency
 - Folic acid deficiency
 - Myelodysplastic syndrome

- **Hyperproliferative**
 - Hemolytic
 - Hemoglobinopathies
 - Autoimmune
 - Membrane disorder
 - Drug-induced
 - Metabolic abnormalities
 - Infections

Iron-deficiency anemia

- Iron deficiency
 - Rapid growth phase
 - Chronic bleeding
 - Pregnancy
 - Low iron diet
 - Inability to absorb iron
 - Iron is needed to form the complex molecule, heme, which is the oxygen-carrying component of hemoglobin

Life stages prone to iron deficiency

- Children under 2 years
- Adolescence – especially girls
- Pregnancy
- Elderly

Physiologic loss of iron

- 1 mg/day – men and nonmenstruating women
- 2 – 3 mg/day – menstruating women
- 500 – 1000 mg – each pregnancy
Iron-deficiency anemia treatment
- Correction of underlying causes of iron deficiency
- Iron replacement therapy – ferrous sulfate
 - Oral administration
 - 150-200 mg of elemental iron per day (3-4 doses)
 - Continue for 6 months after normalization of Hb level
- Parenteral preparations – intramuscular and intravenous

Macrocytic anemias
- Megaloblastic anemia – biochemical defect in DNA synthesis
- Nonmegaloblastic anemia – pathological alteration in membrane lipids of RBC

Vitamin B₁₂ deficiency
- Dietary deficiency
- Pernicious anemia
- Malabsorption syndrome
- Gastrectomy
- Inflammatory bowel disease
- Small bowel resection

Vitamin B₁₂ deficiency
- Parenteral therapy – initial dose 0.1-1 mg/day of vit.B₁₂ i.m. for 1-2 weeks; maintenance dose – 1 mg monthly
- Oral therapy, intranasal gel

Purposes of folic acid
- Folic acid is necessary for the production and maintenance of new cells
- Metabolism of serine, glycine, methionine, and histidine
- Purine and pyrimidine synthesis

Folic Acid and Pregnancy
- Folic acid is very important for all women who may become pregnant
- Protection against a number of congenital malformations including neural tube defects
- Neural tube defects result in malformations of the spine (spina bifida), skull, and brain (anencephaly)
Folic Acid Deficiency

- Megaloblastic anemia
- In infants and children, folic acid deficiency can slow growth rate
- Diarrhea, loss of appetite, weight loss, weakness, sore tongue, headaches, heart palpitations, irritability, and behavioural disorders

Folic acid deficiency

- Pregnancy, alcohol abuse, prolonged biliary drainage, antifolates
- Oral folate 1-5 mg/day
- Vitamin B12 deficiency may cause concomittant folate deficiency!!!

Erthropoietin

- Stimulates red blood cells production
- Indications
 - Anemia of chronic renal failure
 - Anemia secondary to chemotherapy
 - Anemia secondary to cancer, chronic inflammatory diseases, AIDS and diabetes
- Epoietin, darbepoietin (IV or S.C.)